
1

Lesion Detection and Quantitation of Positron
Emission Mammography

Jinyi Qi and Ronald H Huesman

Abstract— A Positron Emission Mammography (PEM) scanner
dedicated to breast imaging is being developed at our laboratory.
We have developed a list mode likelihood reconstruction algorithm
for this scanner. Here we theoretically study the lesion detec-
tion and quantitation. The lesion detectability is studied theoret-
ically using computer observers. We found that for the zero-order
quadratic prior, the region of interest observer can achieve the per-
formance of the prewhitening observer with a properly selected
smoothing parameter. We also study the lesion quantitation using
the test statistic of the region of interest observer. The theoretical
expressions for the bias, variance, and ensemble mean squared er-
ror of the quantitation are derived. Computer simulations show
that the theoretical predictions are in good agreement with the
Monte Carlo results for both lesion detection and quantitation.

I. I NTRODUCTION

Breast imaging using positron emission tomography (PET)
has gained increasing interests. Dedicated PET, commonly re-
ferred to as positron emission mammography (PEM), has been
developed for imaging breast [1], [2], [3], [4]. Comparing to
whole body PET scanners, PEM scanners are built with much
less number of detector modules and have higher sensitivity.

A rectangular PEM scanner is being developed at our Labora-
tory. For this scanner, we have developed image reconstruction
algorithms, including a filtered backprojection algorithm [4] and
a list mode likelihood reconstruction algorithm[5]. In [6] we
have also theoretically studied the resolution and noise proper-
ties of the list mode reconstruction. Combining these results
with computer observer models, we can study the lesion de-
tectability for the list mode likelihood reconstruction and com-
pare the lesion detection with quantitation.

A standard methodology for measuring lesion detectability
is the receiver operating characteristic (ROC) study that com-
pares true positive vs. false positive rates for human observers
for the task of lesion detection in reconstructed images [7], [8],
[9]. However, the human observer ROC study is extremely
time-consuming. To overcome this problem, computer ob-
servers based on signal detection theory have been developed
[10]. Computer observers allow fast evaluation of different al-
gorithms and also provide the possibility of theoretical analysis
of lesion detectability. The computer observers that we used are
the prewhitening (PW) observer, non-prewhitening (NPW) ob-
server, and region-of-interest (ROI) observer. We particularly
focus on the ROI observer because of its unique property of be-
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ing capable to achieve the performance of the PW observer with
a proper prior as to be shown in Section II and its relationship to
lesion quantitation.

This paper is organized as follows. In Section II, we will first
review the list mode likelihood reconstruction and its resolu-
tion and noise properties; then combine these results with com-
puter observer models. We will also compare lesion detection
task with quantitation task and show the difference in the per-
formance of the two tasks. In Section III, the theoretical results
are compared with the results from Monte Carlo simulations.
The conclusions and discussions are presented in Section IV.

II. T HEORY

A. List mode likelihood reconstruction

The log-likelihood function for list mode data is [5]:

L(x) =
K∑

k=1

log
N∑

j=1

p(ik, j)xj −
N∑

j=1

εjxj , (1)

wherexj is mean activity inside thejth voxel of the unknown
image,p(i, j) is the probability of detecting an event from the
jth voxel in theith LOR, ik is the index of the LOR of thekth
detection,εj ≡∑i p(i, j), K is the total number of detections,
andN is the total number of image voxels. This model can be
modified to include randoms and scatters.

A maximum likelihood (ML) estimate can be found by max-
imizing (1). A popular ML algorithm for PET reconstruction is
the expectation maximization (EM) algorithm [11], [12], [13].
However, the ML solution is very sensitive to the noise in PET
data. Hence some form of regularization (or prior function) is
needed to reconstruct a reasonable image. The prior function
used in [5] is a Gaussian prior whose logarithm is of the form

βU(x) =
β

2
(x − m)′R(x − m), (2)

whereβ is the smoothing parameter,m is the estimated mean
of the unknown image, andR is a positive definite matrix that
defines the neighborhood of the prior.

Combining the likelihood function (1) and the image prior
(2), the reconstruction is found as:

x̂ = arg max
x≥0

[L(x) − βU(x)] . (3)

B. Local impulse response function and covariance

The likelihood reconstructions are nonlinear and object-
dependent because of the Poisson statistics. Thus, the resolution
is often studied locally using the local impulse response func-
tion. The local impulse response of thejth voxel is defined as
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[14]

lj(x̂) = lim
δ→0

Ex̂[x + δej ] − Ex̂[x]
δ

(4)

wherex̂[x] denotes the reconstruction of a random data set gen-
erated by the source distributionx, E denotes expectation and
ej is thejth unit vector.

We have shown in [6] that (4) can be approximated by

lj(x̂) ≈ Q′diag
[

λi(j)
λi(j) + βµi

]
Qej (5)

where{λi(j), i = 0, . . . , N −1} is the Fourier transform of the
local invariant approximation of thejth column of the Fisher in-

formation matrix defined asF ≡ P ′diag
[∑N

j=1 pijxj

]−1

P ,

{µi, i = 0, . . . , N − 1} is the Fourier transform ofR (as-
sumingR is a block circulant matrix),Q andQ′ represent the
Kronecker form of the FFT and its inverse, respectively.

Similarly, the jth column of the covariance matrix can be
approximated by

Covj(x̂) ≈ Q′diag
[

λi(j)
(λi(j) + βµi)2

]
Qej . (6)

C. Lesion detection using computer observers

Combining these results with computer observer models, we
can derive approximate theoretical expression for SNR of de-
tecting a cancerous lesion in the reconstructed images. Here we
use the signal known exactly, background known exactly (SKE-
BKE) task. One observer is the prewhitening (PW) observer. It
corresponds to a likelihood ratio test on a Gaussian distributed
image for which the covariance matrix is known and gives the
optimal performance for lesion detection with Gaussian noise.

Let f l be the lesion profile andf0 the background image.
Here we are particularly interested in detection of small lesions,
so we can assume the lesion is so small that it hardly changes
the noise in the data. Thus, the noise inx̂ is independent of the
presence of the lesion. Leth(f0 + f l) andh(f0) denote the
mean reconstructions of the image with and without the lesion
present, respectively. Then the test statistic of the PW observer
is

ηPW(x̂) = z′Σ−1x̂, (7)

whereΣ is the covariance matrix of̂x and

z ≡ h(f0 + f l) − h(f0) (8)

is the observer template.
The observer detection performance can be measured by the

signal-to-noise ratio (SNR) ofηPW(x̂)

SNR2
PW =

[ηPW(h(f0 + f l)) − ηPW(h(f0))]
2

var[ηNPW(x̂)]

= z′Σ−1z (9)

By assuming that the covariance around voxelj is locally sta-
tionary,Σ in (9) can be approximated by

Σ ≈ Q′diag
[

λi(j)
(λi(j) + βµi)2

]
Q, (10)

and thez can be approximated by the convolution between the
lesion profile and the local impulse response function at the le-
sion center

z ≈ Q′diag
[

λi(j)
λi(j) + βµi

]
Qf l. (11)

Note the above approximations are dependent on the location of
the lesion.

Then theSNR2
PW changes to

SNR2
PW ≈ 1

N

N−1∑
i=0

λi(j)ζ2
i (12)

where{ζi, i = 0, . . . , N − 1} is the Fourier transform of the
lesion profilef l.

Whenη(x̂) is normally distributed, theSNR is related to the
area under the ROC curve (AUC) by [15]

AUC =
1
2

[
1 + erf

(
SNR

2

)]
,

whereerf(·) is the error function.
We have shown in [16] that MAP reconstructions can be ap-

proximated by Gaussian distributions, except for the regions
where activity is very low. For breast imaging with FDG, we
can assume the background is quite uniform. Therefore, the PW
observer gives an upper bound on lesion detection in the SKE-
BKE task. However, the PW observer requires the inverse of the
covariance matrix, which is very difficult to compute from the
Monte Carlo samples.

A popular observer model that is often used in practice is the
non-prewhitening (NPW) observer, which computes the follow-
ing test statistic [10]

ηNPW(x̂) = z′x̂. (13)

The only difference between (13) and (7) is the deletion of the
Σ, which eliminate the need for the knowledge of the noise.
This makes the NPW observer very easy to use in practice.

The SNR of the NPW observer is

SNR2
NPW =

[z′z]2

z′Σz

≈
(

N∑
i=1

(
λi(j)ζ2

i

λi(j) + βµi

)2
)2

×
(

N

N∑
i=1

λ3
i (j)ζ

2
i

(λi(j) + βµi)4

)−1

. (14)

It can be shown thatSNRNPW ≤ SNRPW and the equal sign
is achieve if only if the noise is white, i.e.,Σ is equal to the
identity matrix (up to a scalar).

Is there an easy-to-use computer observer model that can
achieve the performance of the PW observer for PEM recon-
structions? To answer this question, we studied various com-
puter observer models with different prior parameters. The prior
parameters we changed areβ, m, andR in (2). We have found
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that a region-of-interest (ROI) observer can achieve the SNR of
the PW observer under certain smoothing conditions.

The test statistic of the ROI observer is [17]

ηROI(x̂) = f ′
lx̂. (15)

It uses the true lesion profile to match with the reconstruction.
This differs from (13) in that the NPW observer uses the recon-
structed lesion profile. The performance of the ROI observer
is

SNR2
ROI =

(
f ′

lz
)2

f ′
lΣf l

(16)

When we choose the zero-order quadratic prior, i.e.,R = I in
(2), we can substitute (10) and (11) into the above expression
and get

SNR2
ROI ≈

(
N−1∑
i=0

(
λi(j)ζ2

i

λi(j) + β

))2

×
(

N

N−1∑
i=0

λi(j)ζ2
i

(λi(j) + β)2

)−1

, (17)

where{ζi, i = 1, . . . , N} is the Fourier transform of the lesion
profilef l.

Let β be sufficiently large such thatβ � λi(j), we have

SNR2
ROI ≈

1
N

N−1∑
i=0

λi(j)ζ2
i ≈ SNR2

PW. (18)

Equation (18) shows that whenβ is sufficiently large, the per-
formance of the ROI observer reaches the upper bound set by
the PW observer.

In Fig. 1 we plot the performance of the PW, NPW, and ROI
observers as a function of smoothing parameter withR = I.
Clearly, it shows that theSNRROI monotonically increases asβ
increases and reaches the the value ofSNRPW whenβ is very
large, while theSNRNPW is always inferior to theSNRPW.
An interesting point to note is that the maximum point of the
SNRNPW is dependent on the size of the lesion – the larger the
lesion is, the larger the optimumβ is. This poses some diffi-
culty in choosing the optimum smoothing parameter to maxi-
mizeSNRNPW: one has to know the size of the target lesion in
order to determine the optimum smoothing parameter. By com-
parison, it is very easy to optimize the smoothing parameter for
SNRROI: just choose a very largeβ.

Note that the monotonic property of theSNRROI is only valid
for the zero-order quadratic prior. We plot in Fig. 2 the SNRs of
the three observers as a function of the smoothing parameter of
a first-order quadratic prior. The prior energy functionU(x) of
the first-order quadratic prior is

U(x) =
1
2

N∑
j=1

∑
k∈Nj ,k>j

(xj − xk)2,

whereNj is the set of the six nearest neighbors of voxelj in
3D. Clearly, theSNRROI no longer monotonically increases as
β increases, and it never reaches the value of the PW observer.
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Fig. 1. Plot of the SNRs of the PW (dotted line), the NPW (dashed line), and the
ROI (solid line) observers as a function of the smoothing parameterβ of the
zero-order quadratic prior for a lesion at the center of the FOV: (a) a 2mm
diameter lesion; (b) a 6mm diameter lesion. The contrast of both lesions are
one.

D. Quantitation

We can also useηROI to quantify the difference between the
lesion uptake and the background activity. In this case, we are
more interested in the bias and variance ofηROI.

bias(ηROI) ≈ 1
N

N−1∑
i=0

(
λi(j)ζ2

i

λi(j) + β

)
− f ′

lf l

=
1
N

N−1∑
i=0

(
βζ2

i

λi(j) + β

)
(19)

var(ηROI) ≈ 1
N

N−1∑
i=0

λi(j)ζ2
i

(λi(j) + β)2
. (20)

As a figure of merit for measuring the quality of the quanti-
tation, the ensemble mean squared error (EMSE) can be calcu-
lated by

EMSE = [bias(ηROI)]2 + var(ηROI)

=

[
1
N

N−1∑
i=0

(
βζ2

i

λi(j) + β

)]2
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Fig. 2. Plot of the SNRs of the PW (dotted line), the NPW (dashed line), and
the ROI (solid line) observers as a function of the smoothing parameterβ of
the first-order quadratic prior for a 6mm lesion at the center of the FOV. The
contrast of the lesion is one.

+
1
N

N−1∑
i=0

λi(j)ζ2
i

(λi(j) + β)2
. (21)

To achieve the minimum EMSE estimate of the lesion uptake,
we can evaluate (21) and choose theβ that gives the minimum
value. Fig. 3 shows the plots of the relative EMSE as a func-
tion of the smoothing parameterβ for different lesions. It shows
that the relative EMSE reduces when the contrast or the size of
the lesion is increased. It is worthy to note the difference be-
tween the SNR of lesion detection shown in (17) and the EMSE
in (21): while the SNR in (17) is linearly proportional to the
contrast of the lesion and always achieves its maximum when
β is sufficiently large, the shape of EMSE curve and its opti-
mum point are dependent on the lesion contrast – the higher the
contrast is, the smaller the optimumβ is. This indicates the op-
timum smoothing parameters for detection and for quantitation
can be very different.

III. M ONTE CARLO SIMULATIONS

We reconstructed 100 computer generated Monte Carlo data
sets with 5 different smoothing parameters. Among the 100 data
sets, 50 data sets contain purely a uniform background and 50
data sets contain the background with a 6mm spherical lesion at
the center of the FOV. We ran the ROI observer and the NPW
observer over the 100 reconstructions and computed the SNR for
both observers. The results are shown in Table I. The standard
deviations were computed using the bootstrap method. The re-
sults shows thatSNRROI monotonically increases asβ increases
and the ROI observer outperforms the NPW observer whenβ is
large.

Fig. 4 shows the comparison between the SNR computed
from Monte Carlo reconstructions and theoretical predictions.
For both observers, the theoretical results lie within the error
bar of the Monte Carlo results, except forβ = 0.00001. The
Monte Carlo results have a positive bias of 1.5% because of the
limited number of reconstructions. After correcting the bias in
the Monte Carlo results, the agreement between the theoretical
predictions and the Monte Carlo results are even better. The
mismatch forβ = 0.00001 may be due to: (1) unconvergence
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Fig. 3. Plots of EMSE of the ROI estimator as a function ofβ for a lesion at
the center of the FOV. (a) A 6mm diameter lesion with contrast equal to 1
(solid line), 3 (dashed line), and 8 (dotted line). (b) A lesion with different
diameters: 6mm (solid line) and 12mm (dashed line). The contrast is 3.

TABLE I

SNR OF ROI OBSERVER ANDNPW OBSERVER FROMMONTE CARLO

RECONSTRUCTIONS.

SNRROI SNRNPW

β = 0.02 1.0187±0.1198 0.7855±0.0877
β = 0.005 0.9839±0.1132 0.8731±0.0952
β = 0.001 0.9432±0.1149 0.9508±0.1026
β = 0.0002 0.8922±0.1160 0.9404±0.1145
β = 0.00001 0.8126±0.0812 0.8623±0.0935

of the Monte Carlo reconstructions – whenβ is so small, the
convergence of the reconstruction algorithm requires extremely
large number of iterations, hence the algorithm are often termi-
nated by the time constraint instead of the convergence criteria;
and (2) large noise caused by the insufficient regularization – the
theoretical analysis is based on low noise approximations, so the
large noise renders the approximations invalidate.

In Fig. 5 we also show the EMSE of the lesion quantitation
from the Monte Carlo reconstructions and compare the results
to the theoretical predictions. Again, the theoretical predic-
tions match with the Monte Carlo results very well, except for
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Fig. 4. Comparison of the SNR from the Monte Carlo reconstructions (squares)
and the theoretical predictions (solid lines): (a) the ROI observer and (b) the
NPW observer. The error bar were calculated using the bootstrap method.

β = 0.00001 due to the same reasons discussed above. The op-
timumβ for achieving the minimum EMSE from the theoretical
predictionβ = 5×10−4 is also consistent with the Monte Carlo
results.

IV. CONCLUSION AND DISCUSSION

We have theoretically studied the lesion detectability of the
list mode likelihood reconstruction for the PEM scanner using
computer observers. We have found that the ROI observer can
achieve the upper bound of the SKE-BKE detection task by us-
ing a zero-order quadratic prior and a sufficiently large smooth-
ing parameter. We have also derived theoretical expressions for
the bias, variance, and EMSE of lesion quantitation. Computer
simulations show good agreement between the theoretical pre-
dictions and the Monte Carlo results for both lesion detection
and quantitation. Future work will include extending the study
to random lesions and random backgrounds, as well as compar-
ing the computer observer results with human performance.
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